Healthcare Predictive Analytics

Predictive analytics in healthcare assesses current and previous healthcare data to garner insights about clinical and administrative workflows. These insights can later be used to make informed decisions to improve operational efficiency, identify patterns, manage diseases, and enhance the quality of care. One of the most promising implementations of healthcare predictive analytics is assessing patients’ health information and identifying who might be at greater risk of disease. Additionally, predictive medical solutions have implementations in public health as they help physicians understand epidemics better.   

Let’s build your project

Made-to-order Healthcare Predictive Analytics Solutions

EDW is a vital tool for effective management and clinical decision making. The need to monitor and prevent infection transmission provides an ideal case for sharing data between multiple facilities.

  • Our healthcare analytics data solutions offer the advantage of sharing data among different providers include monitoring of antimicrobial resistance, measurement of antimicrobial use, detection of hospital-acquired bloodstream infections, measurement of treatment, and detection of antibiotics prescribing errors.
  • The quantity of time and money saved can be estimated well by using the data warehouse.
  • For instance, the hospital can utilize a data warehouse to provide a list of high-risk patients linked to the patient’s next scheduled visit. This enabled the targeted delivery of swine flu vaccine to high volume clinics.
  • The next-generation healthcare providers can consolidate and manage information across the continuum of care. This involves building a warehouse of clinical and financial information that can be shared by health care professionals, regardless of the location.

Healthcare dashboards are complex tools that can aggregate the data from multiple sources and provide an in-depth performance metrics view of the whole hospital management system. OSP Labs’ healthcare analytics software solutions help access data from every source for healthcare insight discovery to enhance patient engagement and operational efficiency.

  • The primary objective of Healthcare dashboard tool is to eliminate inconsistent data, improve reporting and data analysis, and to provide deep insight.
  • Healthcare dashboard metrics allow them to track the performance of the hospital  regarding commercial efficiency and treatment success rates.
  • Knowing the source of problems enable the healthcare team to make better decisions in improving the quality of care, optimizing the workloads and reducing the costs.
  • A single dashboard solution can track the effectiveness of treatments in different patients and compare the work of clinicians with their colleagues.
  • Dashboard analytics is an excellent way to enhance clinician performance and patient satisfaction.
    Our healthcare analytics data solutions help to reduce the time required for connecting to your data, visualizing, analyzing, and ultimately finding the right answers.

A predictive analytics engine is a sophisticated piece of software that processes healthcare data, make sense of it and then makes a logical prediction based on all available data. Building a robust predictive analytics engine is the core predictive analytics solutions offered by the OSP Labs.

  • Our advanced predictive analytics engine development solutions help in gathering raw data from one or more sources and organizing and sorting that data in a meaningful way.
  • The predictive analytics engine also assists in running that data through multiple computer models that will generate actionable insights in a human-friendly manner.
  • OSP Labs skilled developers programme the analytics engine to make it easily interact with various inventory databases, gather data, understand the fundamental parameters and process data to derive valuable predictions.

Customized healthcare predictive analytics software solutions based on artificial intelligence offers extensive scale, speed, and qualitative application. OSP Labs leverages the combined power of AI and predictive modeling to gather precise and actionable insights quickly.

  • Our skilled data scientists work closely with healthcare industry experts to develop custom AI-based Predictive Analytics software solutions that help in monitoring the data, anomaly detection, and predictive maintenance.
  • We leverage advanced algorithms to avoid critical failures and production disruption by getting early predictions regarding the potential risks.
  • OSP Labs tailored AI-powered healthcare predictive analytics solutions offer full-stack statistics such as descriptive, exploratory, and inferential statistics with Ad-hoc analyses and quantitative root-cause finding.

Cloud computing provides the processing and big data support needed for healthcare predictive analytics. In predictive analytics, matching current datasets against historical patterns to determine the probability of future events needs to draw on a lot of data. Cloud computing plays a vital role in maintaining the data safely.

  • Cloud-based predictive analytics helps healthcare organizations to define, test and deploy strategies to meet ever-changing healthcare goals and market.
  • OSP Labs’s cloud-driven tailored healthcare predictive analytics solutions help to rationalize the volume, variety, and velocity of data to generate actionable insights.
  • Our skilled software developers help you easily deploy and scale cloud-based customized predictive analytics solution for real-time decision management and enhance the speed of your decision-making process.

Healthcare at present is on the verge of drastic transformation which will be driven by an increased amount of electronic data. The use of predictive modeling method can successfully mine this data to improve patient care.

Patients at high risk for poor outcomes can also be identified easily to improve patient prognoses through CDSS. The type of conditions in real time can be predicted well in advance before the onset of any clinical symptoms.

Physicians use predictive algorithms for more accurate diagnoses. The employers and hospitals will be provided with predictions concerning insurance and product costs. Pharmaceutical companies use predictive healthcare analytics software solutions to meet the needs of public for medications in a better manner.


OSP can develop healthcare predictive analytics software to analyze patients' health information from many years to the present. This generates vital clues about the patient's medical situation and identifies if they are likely to develop a disease. This provides a predictive approach to care instead of a reactive one, enabling doctors to respond faster before the disease progresses, leading to better clinical outcomes.

Chronic diseases are the leading causes of death and disability in the United States and account for a large part of healthcare spending. OSP can design and develop predictive analytics healthcare solutions to assess clinical data about patients with chronic diseases and the treatments prescribed. This will highlight important insights for doctors regarding medications and the patient's interaction with them. As a result, doctors can make informed decisions and manage chronic diseases better.

Studies have estimated that fraudulent insurance claims cost billions of dollars in losses to insurance payers. Since payers need to process numerous claims daily, the likelihood of fraudulent ones getting approved tends to be high. But OSP can develop customized predictive health intelligence applications for payers to automate the process of claims adjudication and filter out anomalous claims for further scrutiny. This cuts down insurance fraud significantly.  

Let’s build your project

Our Core Services

Solutions We Offer

What Our Client Said

Industry Industry Industry Industry Industry Industry Industry Industry Industry Industry

Case Studies

Let's Begin

Latest Talks


10 rapidly growing medicine specialities to look for in 2022

Read More

10 Exclusive Dashboards for Healthcare Decision Makers

Read More

Health Leadership Insights: Making Digital Health Profitable

Read More

The Future of Connected Health: Challenges & Strategies Ahead

Read More