

Schedule Stats Report

Schedule Shifts Confirmations Swaps & Transfers Shareable Links View Schedule By: <u>Calendar</u> -

riday	Saturday
1 December	02
4a-8a Wall, Marion MD Dale & Texas	 4a-8a Abugov TEST, Max DO Dale & Texas
Test Wegner, Lucille DO Dale & Texas	 8a-Sp Adams-Morris, Ava MD Dale & Texas
7a-8p (Call) Webster, Larry MD Date & Texas	 12p-7a Abernethy TEST, Ama DO Dale & Texas
8a-5p Adkins, Dayne MD Dale & Texas	
12p-7a Wegner, Lucille DO Dale & Texas	
08	09
Test Webster, Larry MD Date & Texas	Test Cruz TEST, Kenneth DO Dale & Texas

INTELLIGENT CLINICIAN

SCHEDULING

Al-Augmented Optimization Using Linear Programming

TABLE OF CONTENTS

Executive Summary

01

The Healthcare Staffing Crisis

The Challenge: Complex Staffing Optimization

Solution Overview: Agentic AI + Linear Programming

Implementation Phases

Why We're a Fit

EXECUTIVE SUMMARY

Hospitals today face major challenges in scheduling the right number of clinicians at the right time. While predictive tools can

forecast patient demand, most healthcare systems still rely on

manual or outdated methods to create staff schedules. This

leads to overworked clinicians, last-minute shift changes, and

gaps in patient care.

This white paper presents a smarter approach: combining **Linear Programming (LP)** with **AI agents** to build optimized, flexible staffing schedules. LP helps solve complex problems involving

multiple constraints— like clinician availability, work-hour limits,

and personal preferences—while AI agents add flexibility,

automation, and usability.

We outline how this solution works, how it connects with systems

like Epic, Workday, or UKG, and how it can be tailored for real-

world hospital environments. Our goal is to help healthcare

leaders like you bridge the gap between demand forecasting

and workforce planning—accurately, efficiently, and at scale.

THE HEALTHCARE STAFFING CRISIS

The clinician shortage in the U.S. is reaching critical levels. According to the Association of American Medical Colleges

(AAMC), the country may face a shortfall of over 124,000

physicians by 2034, with nursing shortages compounding the

issue in nearly every state. At the same time, burnout rates are

surging, with over 60% of U.S. physicians reporting emotional

exhaustion, primarily driven by unmanageable workloads and

erratic scheduling.

These workforce challenges are amplified by:

Rigid scheduling systems that don't adapt to changing patient

volumes

• Lack of integration between predictive analytics and workforce

planning tools

Inability to account for clinician preferences, leading to

dissatisfaction and high attrition

• Operational silos between HR, nursing leadership, and IT

www.osplabs.com

departments

THE HEALTHCARE STAFFING CRISIS

Despite having access to EHR data (like Epic) and workforce data (like UKG or Workday), most healthcare systems still rely on

manual scheduling spreadsheets, flat file imports, or limited

rule-based software that fails to scale with complexity.

This disconnect between predicted demand and real-world staff

allocation leads to coverage mismatches, missed care targets,

and reduced job satisfaction. Solving this requires a shift from

traditional scheduling tools to intelligent systems that can factor

in rules, constraints, and personal preferences—automatically

and at scale.

Source: Association of American Medical Colleges (AAMC)

THE CHALLENGE! COMPLEX STAFFING OPTIMIZATION

Staff scheduling in healthcare isn't just about filling shifts—it's

about balancing patient demand, clinician availability, legal rules,

and individual preferences, all at once. Most hospitals rely on

spreadsheets or rigid software that struggle to account for:

Varying coverage needs across units and facilities

Staff availability and preferences

Compliance with labor laws and union rules

- Minimizing shift swaps and manual overrides
- Even with predictive models for demand and HR systems tracking
- availability, the gap remains: how to intelligently match supply to
- demand while respecting constraints. At scale-across hundreds
- of clinicians and shifts—manual scheduling breaks down.

To solve this, healthcare systems need a smarter approach that

- delivers optimal assignments, adapts in real-time, and clearly
- explains scheduling decisions. This is where Linear Programming (LP) and Al agents offer a powerful, scalable solution.

To solve the complex, constraint-heavy nature of clinician

scheduling, we combine Linear Programming for mathematical

precision with AI agents for usability, flexibility, and explainability.

This hybrid approach scales across large systems while keeping

the experience intuitive for end users.

Key Components

Linear Programming engine solves for optimal staff-to-shift

allocations under real-world constraints

- Agentic AI layers provide intelligent interaction, explanations, and adaptability to shifting conditions
- Modular design integrates with Epic, Workday, and UKG—either via APIs or flat files

Inputs & Data Flow

Input Type	Source System	Details
Demand	Epic EHR	90-day predictive
Forecast	(FHIR API / Flat File)	staffing per unit
Clinician Supply	Workday / UKG	Availability, roles, credentials
Staff	Internal portal /	Shift types, off-days,
Preferences	Survey agent	work-life constraints

Scheduling Rules	HR / Union policies	Fatigue limits, max shifts, mandatory rest

Optimization Logic (Driven by LP)

- Ensures all required coverage is met for each unit/shift
- Applies constraints like max hours/week, rest periods, skill mix
- Balances soft constraints like preferences and fairness
- Objective: Maximize shift satisfaction while minimizing conflicts

and manual overrides

Hospital Staff Scheduling Optimization Architecture

Real-World Adaptability

System automatically flags high-risk gaps if clinician preferences

create shortfalls

Learns from historical swaps and absences to reprioritize

constraints over time

Transparent logs help HR and clinical leads audit how and why

schedule decisions were made

AIAGENT DESIGN

To make the LP-based scheduler usable, adaptive, and

transparent, we embed a layer of agentic Al components that

interact with users across roles—clinicians, schedulers, HR, and

managers. These agents are purpose-built to handle domain-

specific tasks, drive user engagement, and bridge the technical

complexity of the optimization engine.

09

AIAGENT DESIGN

Key Agent Modules

Agent

Primary

Example Use Case

Module	User	Function	Example Use Case
NLP Explainer	Schedulers	Interprets scheduling logic and constraint impact in natural language	"Why wasn't Dr. Kim assigned to ICU on Tuesday?" → "Not ICU- certified; has a hard constraint on Tuesdays."
Simulation Bot	Managers & Planners	Runs "what-if" scenarios to analyze impact of staffing changes or demand fluctuations	"What if 2 ICU nurses are unavailable next week?"
<section-header></section-header>	Clinicians	Gathers and updates shift preferences, availability, and soft constraints via portal/ mobile interface	"I prefer morning shifts and no weekends."
Swap Validator	Clinicians + HR	Validates shift swap requests against the LP model and institutional rules	"Can Alex swap shifts with Priya? Suggests conflict or confirms feasibility."

•		

AIAGENT DESIGN

I'd like to work morning shifts

U

IMPLEMENTATION PHASE

Implementation Phases

We follow a five-phase rollout plan that reduces risk and delivers

measurable results quickly. The goal is to validate the scheduling

engine in real-world settings, starting with limited deployments

and scaling gradually.

Phased Rollout Plan

Phase	Description	Deliverables	Duration
Discovery	Stakeholder interviews, constraint gathering, data source audit	Scheduling rulebook, integration map	1–2 weeks
Modeling	LP constraint model setup, input mapping, solver prototyping	Optimizer model with test data	2–3 weeks
Prototype	Integration with sample Epic/Workday/HR data, pilot agent deployment	Working demo for 1–2 units	3–4 weeks
Pilot	Real-world deployment in selected department/ unit with live feedback	Weekly schedules, preference capture, metrics	4–6 weeks
Rollout	System-wide adoption across departments, integration into clinician portals	Full coverage, ongoing constraint refinement	6–12 weeks

SECURITY, COMPLIANCE & GOVERNANCE

Our architecture is designed with security and healthcare

compliance at its core-ensuring your data, workflows, and audit

requirements are fully protected and transparent.

Key Safeguards

HIPAA Compliance

• All data at rest and in transit is encrypted (AES-256, TLS 1.2+).

Access controls are enforced with strict role-based permissions.

Audit Logging

Every schedule change, preference update, and swap decision

is logged for traceability.

Immutable logs available to HR and compliance leads.

FHIR-Native Architecture

• Data from Epic EHR is consumed via secure FHIR APIs.

Only minimal necessary data is stored for scheduling

optimization.

SECURITY, COMPLIANCE & GOVERNANCE

FHIR-based Data Flow From EPIC to Scheduling Engine

WHY WE'RE A FIT

OSP Labs is uniquely positioned to execute this solution with

precision, scale, and security.

Proven Capabilities

• FHIR, Epic, and Workday Integration Expertise

Over 30 Epic integration projects and custom Workday

automation builds completed.

Constraint-Based Optimization at Scale

In-house teams with expertise in Google OR-Tools, Pyomo,

and Gurobi

- Purpose-Built Al Agents for Healthcare Use Cases
 - NLP explainers, schedule simulators, and swap validators in
 - production use

We are a leading software development company aiming to empower, and inspire the world with next-gen solutions. We help in simplifing every step of the development process, from system architecture design to quality delivery. Our intelligent processes enable quick deployment of enterprise-grade solutions against the toughest, and most complex challenges.

We are re-imagining how technology can empower BFSI organizations to build solutions for every day use in business applications.

With 10+ years of experience, and 200+ customers worldwide, we're leveraging technology to build the future today.

Texas | California | Maryland | Mumbai

© 2025